

Cellulosic ethanol in China Executive summary

April 2009

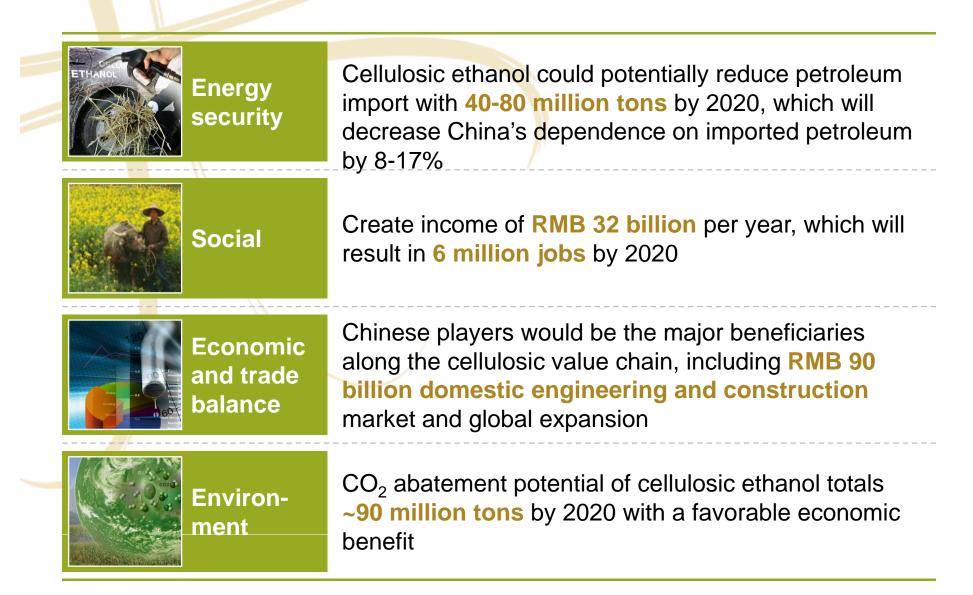
CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

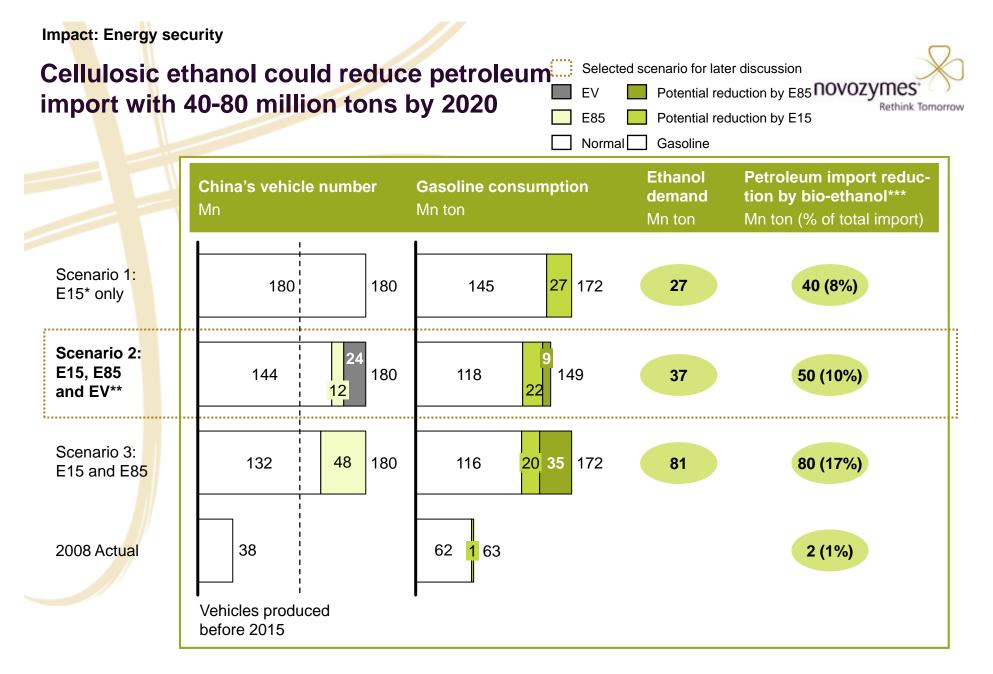
What is the 2nd Generation (2G) bioethanol?

2G bioethanol – Fuel from residues

2G bioethanol is also called cellulosic ethanol, and is produced from

- Agriculture residues, e.g., corn stalks
- Forestry residues, e.g., leaves and husks of corn plants, wood chips, etc
- Cultivated energy crops, e.g., switch grass


- 1G bioethanol uses food as the feedstock, e.g., corn
- 1.5G bioethanol uses nonfood agriculture products as feedstock, e.g., cassava


Technology will be ready by 2010

Novozymes will be **the first** company to supply commercial quantities of enzymes to produce cellulosic bioethanol

Cellulosic ethanol could pose big benefits to China

* E15 is fuel mixture of 15% ethanol and 85% gasoline; E85 is fuel mixture of 85% ethanol and 15% gasoline

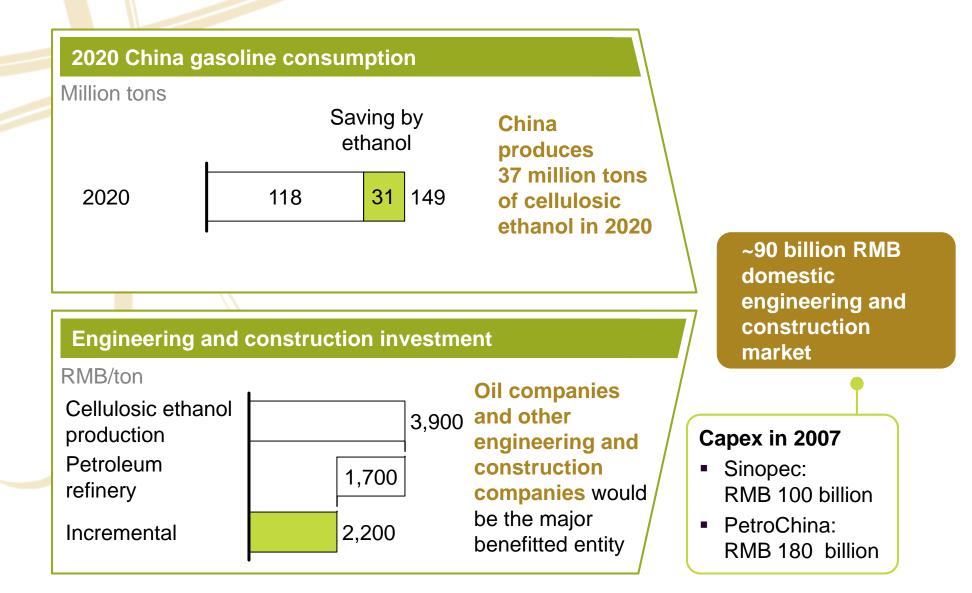
** Assume EV comprises 50% of new vehicles and E85-modified comprises 25%

*** Assume 1 ton gasoline reduction results in 1.5 ton of crude oil reduction

Source: Expert interview; CEIC; Team analysis

Impact: Social benefits

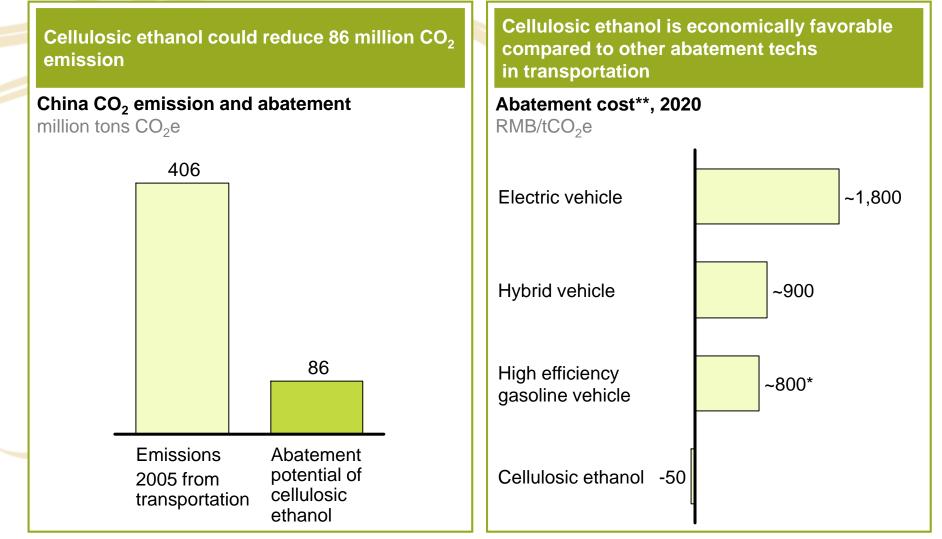
37 mn tons of cellulosic ethanol could create ~32 billion of direct income in 2020, equivalent to 6 million job creation


	Field collection	Agency collection	Cellulosic ethanol plant
Direct jobs created	5,600,000*	100,000	100,000
Income per person RMB/year	4,800	16,000	38,000
Total incom RMB billions	26	2	4

- 32 billion of direct income increase could be achieved in 2020, which will result ~6 million direct job creation (~50% will happen in inner-land)
- Additional farmers in remote areas could be benefited if energy crops are grown for cellulosic ethanol production

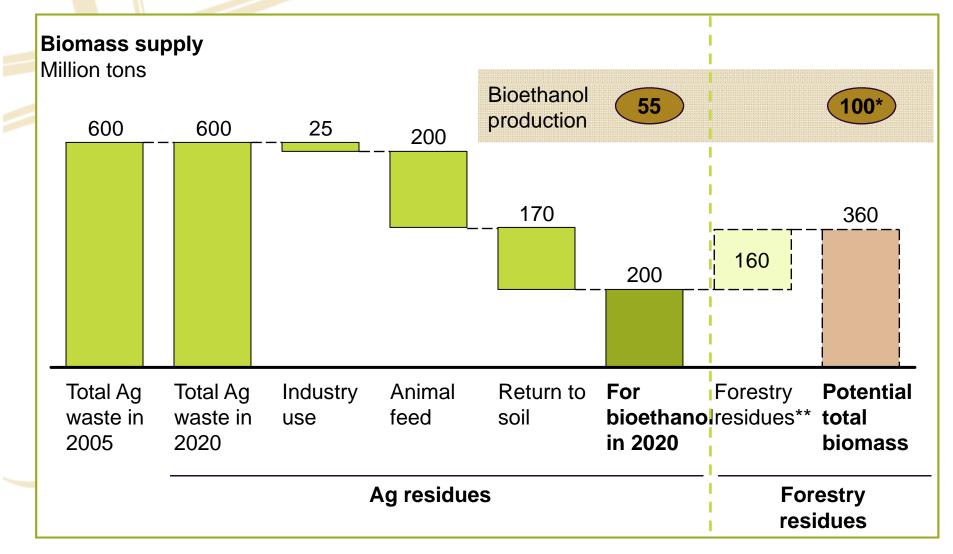
* Equivalently, ~11 million farmers could increase annual income by RMB 2,400 (or 50%) by working 2 months per year

37 mn tons of cellulosic ethanol could also create a RMB 90 billion of engineering and construction business opportunity


Chinese players would be the major beneficiaries along the value chain

	Feed- stock plantation	Logistics	Technology		Produc- tion	Blending	Distribu- tion/retail
		中粮 COFCO	〇〇 中粮 соғсо	novozymes [•] Rethink Tomorrow	tajarce) ODEC	S	tagete ODEC
Core partners	 Major Co-develop and invest in the R&D, which lead to co-owned IPRs Co-develop the pilot plants for potential commercialization 						
	Major benefits						
Other Chinese players benefitted	Small-mediu scale bioma logistic companies		 Local bioethanol Henan Tiangu Anhui BBCA Shandong Lo biotechnology 	uan Biochemical ng-live		I the enzyme	
						in China	

Finally, 37 mn ton cellulosic ethanol would reduce CO_2 emission by ~90 mn tons


* Refer to most expensive high efficiency gasoline car here

** Refer to social cost

Source: 'China's Green Revolution'

China could produce up to 100 mn tons of cellulosic ethanol from available residues alone – realizing even larger benefits

* Assume same transforming ratio for forestry residues as ag residues: 92 gallon/ton-dry

** China forestry residues have ~1bn ton biomass available in total, but burning, pulp and paper, returning to forest consumes most of it. 160mn ton is what left after all the other major consumptions.

Source: China Ministry of Agriculture; China Statistical Yearbook; China GHG inventory list; Expert interview; Team analysis

Cellulosic ethanol is ready for commercialization despite the challenges

Promising positioning

- Technology is ready
- Cost becoming competitive
- Middle and downstream distribution channel could be mostly leveraged from existing petro-system

Existing challenges

- RMB 90 billion investment needed within a short period to support build bioethanol plants
- Biomass supply
 - Large scale of sophisticated biomass logistic system to be build with in a short period
 - Cellulosic bioethanol would also face competition for biomass supply

Significant progresses have been achieved along the value chain for commercialization

Feedstock		Ethanol production	Midstream logistics	Downstream distribution	
Over- view	 Grain harvest and biomass collection Shipment to conversion facilities and storage 	 Biomass conversion Intermediary storage 	 Shipping ethanol to end-markets Blending with gasoline blendstock 	 Distributing to retail outlets Retail of ethanol or of blended gasoline (e.g., E85 gas stations) 	
Current situation	 Recent market forming in process 	 Technology breakthrough 	 Experience exists from transporting 1G bioethanol 	 Few changes need to be made to switch to bioethanol 	

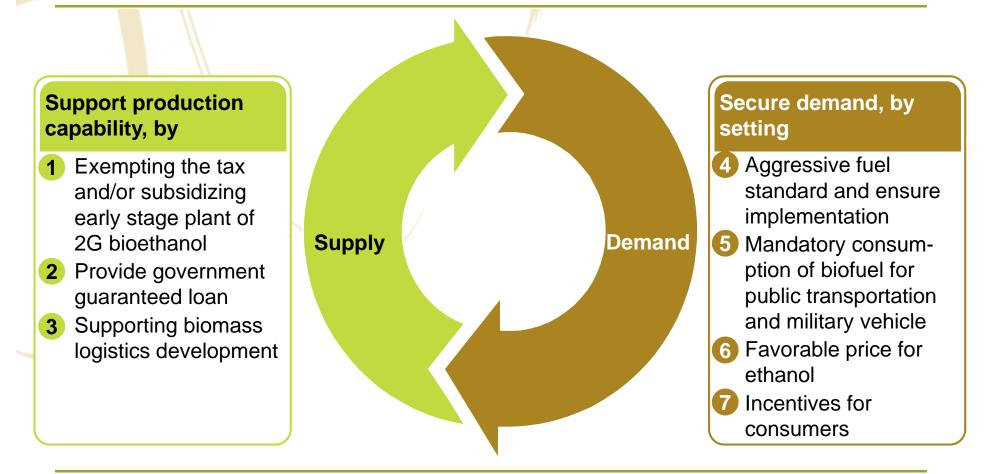
Industry assessment: Cost and value chain development

Cost are becoming competitive

	Production cost* JSD/gallon	Subsidy/tax USD/gallon	CO2 abatement	Job creation
Cost of cellulosic bioethanol in 2010	2.7	n/a		
Cost of c <mark>el</mark> lulosic bioethanol in 2015	1.3	n/a		
Gasoline**	2.0	0.9	N/A	N/A
1G bioethanol	1.9	-0.6		
Coal to gasoline***	2.0	n/a		
* Tax excluded	2.0			

** Average Singapore FOB ex-work price exclude tax when crude oil price ranges from USD ~70bbl

*** Based Indirect CTL cost from Merrill Lynch report, with conversion rate of 40%, coal price of USD 2/mmBtu and transportation cost of USD 0.50/mmBtu


Source: Interview with experts; Team analysis

Government support is essential to transform this challenge into a self-sustainable future industry

Principle

- Secure demand during early stage and set aggressive target as market matures
- Support production capability simultaneously to lower the cost in a short period

Government's supp		2015- 2020	NOVOZYMES* 2020- 2025
Return and benefits to China	 2015 Strengthen IPR positioning Create jobs in engineering and construction industry 	 32 billion of direct income increase ~90 million ton gasoline substitute in 5 years ¥90 billion engineering and construction market Global technology leading position >300 million tons CO₂ abate-ment in 5 years 	engineering and construction and licensing
Investment	 Investment for R&D and plants building Strong government supports 	5 year delay	